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SOLID
● Robert C. Martin - Agile Software Development (2003)

● 5 Principles - S. O. L. I. D.

● Object Oriented design

● About Software Maintainability 



Rubber Duck Debugging
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A B
Calls

Imports

Changes in B imply changes in A

PersistenceBusiness
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B changes often

We want to Reuse A



Dependency Inversion Principle

1. High-level modules should not depend on low-level modules. 
Both should depend on abstractions.

2. Abstractions should not depend on details.
Details should depend on abstractions.
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Your domain , your rules
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Code inspection
Evaluating our modules                                                   Explain their responsibilities

Business knows 
details about

- Persistence
- Messaging



Invert all the things



But Agile wins

- Don’t code for tomorrow

- Don’t plan for reuse

- Refactor towards perfection



But Agile wins

- Don’t code for tomorrow

- Don’t plan for reuse

- Refactor towards perfection

So where do we start ?



Start on new code ?

+ Manageable refactors 



Start on new code ?

+ Manageable refactors          (as in no refactor)



Start on new code ?

+ Manageable refactors          (as in no refactor)

- Possibly useless



Start on new code ?

+ Manageable refactors          (as in no refactor)

- Possibly useless

- Probably useless



Start on required changes

+ Probably valuable  



Start on required changes

+ Probably valuable   ( at least it changed once )



Start on required changes

+ Probably valuable   ( at least it changed once )

- Keep refactors manageable



Start on required changes

+ Probably valuable   ( at least it changed once )

- Keep refactors manageable

↳  1 use case at a time 



Day to day

- Code Review : Look for details

- Pitch abstractions to outsiders



Thank you


