
SOLIDify your code
Arnaud Bellizzi

About me
@Oodrive (since 2013)

Team Backup & Archive

Architect

SOLID
● Robert C. Martin - Agile Software Development (2003)

● 5 Principles - S. O. L. I. D.

● Object Oriented design

● About Software Maintainability

Rubber Duck Debugging

SOLID Principles
Single Responsibility “One class - One reason to change”

SOLID Principles
Single Responsibility

Open/Closed

 “One class - One reason to change”

“Open for extension, Closed for modification”

SOLID Principles
Single Responsibility

Open/Closed

Liskov Substitution

 “One class - One reason to change”

“Open for extension, Closed for modification”

“Subtyping should not break anything”

SOLID Principles
Single Responsibility

Open/Closed

Liskov Substitution

Interface Segregation

 “One class - One reason to change”

“Open for extension, Closed for modification”

“Subtyping should not break anything”

“Use small cohesive interfaces”

SOLID Principles
Single Responsibility

Open/Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

 “One class - One reason to change”

“Open for extension, Closed for modification”

“Subtyping should not break anything”

“Use small cohesive interfaces”

Wait, I lied

Wait, I lied

SOLI Dify your code

Dependency Inversion Principle

1. High-level modules should not depend on low-level modules.

Dependency Inversion Principle

1. High-level modules should not depend on low-level modules.
Both should depend on abstractions.

Dependency Inversion Principle

1. High-level modules should not depend on low-level modules.
Both should depend on abstractions.

2. Abstractions should not depend on details.

Dependency Inversion Principle

1. High-level modules should not depend on low-level modules.
Both should depend on abstractions.

2. Abstractions should not depend on details.
Details should depend on abstractions.

Dependencies

A B

Dependencies

A B

doBThing()

Dependencies

A B
Calls

doBThing()

Dependencies

A B
Calls

doBThing()b.doBThing()

Dependencies

A B
Calls

Imports

b.doBThing() doBThing()

Dependencies + Change

A B
Calls

Imports

doBThing()
doBetter()

b.doBThing()

Dependencies + Change

A B
Calls

Imports

b.doBThing()
b.doBetter()

doBThing()
doBetter()

Dependencies + Change

A B
Calls

Imports

Changes in B imply changes in A

Dependencies + Change

A B
Calls

Imports

Changes in B imply changes in A

External API Business

Dependencies + Change

A B
Calls

Imports

Changes in B imply changes in A

External API Business

Dependencies + Change

A B
Calls

Imports

Changes in B imply changes in A

Business Persistence

Dependencies + Change

A B
Calls

Imports

Changes in B imply changes in A

PersistenceBusiness

Dependencies
There is a problem when . . .

Dependencies
There is a problem when . . .

B changes often

Dependencies
There is a problem when . . .

B changes often

We want to Reuse A

Dependency Inversion Principle

1. High-level modules should not depend on low-level modules.
Both should depend on abstractions.

2. Abstractions should not depend on details.
Details should depend on abstractions.

Dependencies Inverted

BIZ

Dependencies Inverted

BIZ I

store(...)

Dependencies Inverted

BIZ IImports

store(...)i.store(...)

Dependencies Inverted

BIZ PERIImports Implements

store(...)i.store(...)

Dependencies Inverted

BIZ PERIImports Implements

i.store(...) store(...) store(...)

Dependencies Inverted

BIZ PERIImports Implements

i.store(...) store(...)

Injection

store(...)

Dependencies Inverted

BIZ PERIImports Implements

i.store(...) store(...)

Scans
Injection

store(...)

Dependencies Inverted

BIZ PERIImports Implements

i.store(...) store(...)

Injection
Injects

store(...)

Dependencies Inverted

BIZ PERIImports Implements

i.store(...) store(...)

Injection

Calls

store(...)

Dependencies Inverted + Change

BIZ PERIImports Implements

i.store(...) store(...) store(...)

Changes in PER are restricted by Contract

Dependencies Inverted + Change

BIZ PERIImports Implements

i.store(...) store(...) store(...)

Changes in Contract affect BIZ & PER

Dependencies Inverted + Change

BIZ PERIOwns Implements

i.store(...) store(...) store(...)

BIZ owns the Contract

Dependencies Inverted + Change

BIZ PERIOwns Implements

i.store(...) store(...) store(...)

Changes in PER are unseen by BIZ

Dependencies Inverted + Change

BIZ PERIOwns Implements

i.store(...) store(...) store(...)

Changes in PER are unseen by BIZ

Costs

- Requires more code

Costs

- Requires more code

- Performance overhead

Costs

- Requires more code

- Performance overhead

- Where is my implementation ?

Gains

- Protect valuable code from unnecessary change

Gains

- Protect valuable code from unnecessary change

- Increased readability of valuable code

Gains

- Protect valuable code from unnecessary change

- Increased readability of valuable code

Your domain , your rules

Evaluating our modules

Code inspection

Code inspection
Evaluating our modules Explain their responsibilities

Code inspection
Evaluating our modules Explain their responsibilities

Code inspection
Evaluating our modules Explain their responsibilities

Business knows
details about

- Persistence
- Messaging

Invert all the things

But Agile wins

- Don’t code for tomorrow

- Don’t plan for reuse

- Refactor towards perfection

But Agile wins

- Don’t code for tomorrow

- Don’t plan for reuse

- Refactor towards perfection

So where do we start ?

Start on new code ?

+ Manageable refactors

Start on new code ?

+ Manageable refactors (as in no refactor)

Start on new code ?

+ Manageable refactors (as in no refactor)

- Possibly useless

Start on new code ?

+ Manageable refactors (as in no refactor)

- Possibly useless

- Probably useless

Start on required changes

+ Probably valuable

Start on required changes

+ Probably valuable (at least it changed once)

Start on required changes

+ Probably valuable (at least it changed once)

- Keep refactors manageable

Start on required changes

+ Probably valuable (at least it changed once)

- Keep refactors manageable

↳ 1 use case at a time

Day to day

- Code Review : Look for details

- Pitch abstractions to outsiders

Thank you

